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ABSTRACT

The present paper continues the study of balanced treatment incom-

plete block (BTIB) designs initiated in [], [2], and [3]. This class

of designs was proposed for the problem of comparing simultaneously

p Z 2 test treatments with a control treatment when the observations

are taken in blocks of common size k < p + 1. A list of generator

designs, the conjectured minimal complete class of generator designs, a

catalog of admissible designs, and tables of optimal designs are given

for p = 4, k = 4. Some comparisons are made with admissible designs

for p = 4, k = 3.

Key words and phrases: Multiple comparisons with a control, balanced

treatment incomplete block (BTIB) designs, admissible designs, S-inadmis-

sible designs, C-inadmissible designs, minimal complete class of generator

designs, optimal designs.
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1. INTRODUCTION

The present paper continues the study of balanced treatment incom-

plete block (BTIB) designs begun in [1], [2] and [3]. This class of

designs was proposed for the problem of comparing simultaneously p > 2

test treatments with a control treatment when the observations are

taken in blocks of common size k < p + 1. Papers [1]-[3] give the

background, motivation and notation for this study.

In [1] a general theory of BTIB designs was developed; in [2] opti-

mal designs were given for the cases p = 2, k = 2(1)6 and p 3, k = 3

while in [3] optimal designs were given for the cases p = 4, k 3 and

p = 5, k 3. In the present paper we give optimal designs for the

case p 4, k = 4; these optimal designs are subject to the same quali-

fication as those given in [3]--namely that they are optimal relative to

the generator designs known to us. However, we conjecture (as we did

for p = 3, k = 4 and p = 3, k = 5 in [3]) that we have enumerated all

of the admissible generator designs for p = 4, k = 4, and that if ad-

ditional ones do exist the incremental gain achieved by using the full

set in place of our set would be very small.

In our study of the cases p = 4, k = 3 and p = 5, k = 3 it was neces-

sary for us to generalize and develoD further certain concepts which we had

introduced for the cases p 2, k 2(1)6 and p = 3, k = 3. For our

present study of the case p 4, k '4 no further generalizations were required.

(See, however, Remark 2.3 of the present paper.) Thus the reader is referred

to [3] for the definitions of inadmissibility, S-inadmissibility and C-inadmis-

sibility used in this paper. In presenting our results for p = u, k =u

we hope to accomplish two objectivesi (a) To provide other researchers



in the combinatorial design area with our list of generator designs and

our conjectured minimal complete class of generator designs with the hope

that they can supply additional generator designs (if any exist), and

more importantly that they can propose a feasible method or methods of

constructing an exhaustive set of such designs, and (b) To provide exper-

imenters with optimal (or nearly optimal) designs that can be implemented

in practice.

The reader is referred to Sections 2 and 3 of [2] and Sections 1 and

2 of [3] for an exact statement of the multiple comparison problem under

consideration, expressions for the BLUE's of the treatment effect differences

a - a (1 =. i .< p), their variances and correlations, and an expression

for the confidence coefficient P associated with joint one-sided confidence

interval estimates of the 0 - a i (1 i < p).

2. RESULTS FOR p_= 4, k = 4

2.1 List of generator designs

The generator designs that we have constructed for p = 4, k = 4 (by

the methods described in Section 3.2 of [], or by other methods) are lis-

ted in Table 2.1. As in [3] we have not exhibited equivalent designs which

differ only trivially from those given in the tables.

For the generator designs in Table 2.1 we note that: a) D5  is

S-inadmissible w.r.t. DV b) D6  is equivalent to D3 u D4, c) D7  is

S-inadmissible w.r.t. D3 and D3 u D d) D8  is S-inadmissible w.r.t.

D 3 u 2D, e) D9  is S-inadmissible w.r.t. D u D3 , f) D10  is S-

inadmissible w.r.t. D1 u D3 u 2D4, g) D I is S-inadmissible w.r.t. 6D4 ,

h) D12 is S-inadmissible w.r.t. 12D 4, and i) D13 is S-inadmissible



3

Table 2.1

Generator Designs for p 4, k 4

Label Design b. A M
D 01

D 11124 3 2

2 2343

li00000000000
3 112233l 2 3 4~. ,

D44

D 5 0 0 O00

234

(D 0 1

D6 000 12

(12 23344

D {oooo

0001
24334

412

0 00000
0000 0

Ol 2 3 04 2 3

0 0 0 0 0 0 0

D 2 00 7 6 2

00(12 4 34 __ __ 4__4)

0 _ _ _ _ 0_ _ _



Table 2.1 (continued)

Label Design b xi) )1

1 01 0 D 0 00 1 
O0O00002" [

8 12142444 8 6)
23 34 3444

0 . 0 0 0 0 0 0 00
01000 0 00

(44223434 34)

DI. 1 1 2 2 2 3 3 3 4 44
1 134124123

{234344123
3 4134124123 12 0131222233

S1 211121112111 16 0

13 ~~ 3 23 3223223
DI32 2 3 4 1 3 3 2 4 1 2 3 12 0i02 4 14 3 4 24 3 4 2 33)

2 3 41 3 41 2 41 2

4) 16 0 1
D 1 1 21 1 2 1 12 1 1[
13 22 3 2 23 3 2 33 2! 3
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w.r.t. 16D . Thus for p 4, k = 4 and b > 4 it suffices to consider

unions of replications of DI,D 2,D3,D 4 when seeking the optimal design

for a specified d/a. We conjecture that {DI,D 2,D 3,D 4  is the minimal

complete class of generator designs for p = 4, k = 4.

2.2 Catalog of admissible designs

A catalog of admissible designs has been prepared based on the set

of admissible generator designs given for p = 4, k = 4 in Table 2.1.

This catalog is given in Table 2.2 for b = 4(1)27. It is to be noted that

the number of admissible designs increases rapidly with b for p = 4,

k = 4; e.g., for b = 27 we have 13 admissible designs for p = 4, k = 4

whereas for b = 27 we had (see [3]) 2 admissible designs for p = 4, k = 3

and 5 admissible designs for p = 5, k = 3.

Remark 2.1: We note from Table 2.2 that when D3 appearL as an admissible

design for a particular b, it is always associated with the smallest value

of T and p for that b- hence, the associated design is always optimal

for that b for d/a sufficiently large.

2.3 Tables of optimal designs

Optimal designs for p = 4, k = 4 are given in Table 2.3 for

d/a = 0.1(0.1)1.0 and b 4(1)31. Optimal designs that achieve a specified

confidence coefficient 1 - a are given as a function of d/o for 1 - a

0.75, 0.80, 0.85, 0.90, 0.95 and 0.99 in Table 2.4. These designs were

found by a complete computer search among all admissible designs.

Remark 2.2: We note from Table 2.4 that for d/o - 0 and 1 - 1

the optimal design essentially employs only replications of D which

is a BIB design among the 4 test treatments augmented by a control treat-
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ment in each block. (An analogous phenomenon was reported for p = 4,

k = 3 and p = 5, k = 3 in Remark 3.4 of [3].)

Remark 2.3: As mentioned in Remark 2.1 of [3] it may be of some interest

to compare designs with different k-values for the same p-value. Thus an

experimenter who is faced with the choice of the block size (subject to

the restriction that the common block size k < p + 1) may wish to make

such broader comparisons (which we have not made before), and rule out in-

admissible designs using the following generalized definition: If D1

22and D are BTIB designs with parameters (bl,kpT,) and (b k2T ,P
2 1' 22k 2  2

respectively, with N1 = k b S N = k b T2 < T 2  and P ?-P
1 11=2 22 1=-29 1-2

with at least one inequality strict then D2  is said to be inadmissible

w.r.t. D . (This definition is equivalent to the one given in Remark 2.1

of [33 as a consequence of Theorem 5.1 of 1l].)

Using this definition it can be verified that all designs for p = 4,

k = 3 and b = 16 (see Table 3.3 in [2]) are inadmissible w.r.t. some design

for p = 4, k = 4 and b = 12 (see Table 2.1 of the present paper), the

N being equal to 48 in both cases. Similarly, all designs for p = 4, k = 3

and b 20, 24, 28, 32 are inadmissible w.r.t. some design for p = U, k =4

and b 15, 18, 21, 24, respectively. We conjecture that the same phencmenon

occurs for higher values of b. This indicates that for given p and

fixed kb = N, designs with larger k-values (k < p + 1) are preferable

since such designs are "more complete."

We have obtained one example in which a BTIB design for p = 49 k = 4

is inadmissible (in the broader sense) w.r.t. a BTIB design for p = 4, k = 3.

(Note: This pair of designs was found by comparing all admissible designs

for p = 4, k 4 4, b = 4-75 with all admissible designs for p = :, k = 3,

b = 4-1)0, and was the only such design found.) If we denote by Di(3)& 1



(i<i<5) and D.(4) (1 < i < 4) the designs for p 4 in Table 3.1 of
1

[3] and Table 2.1 of [4], respectively, we consider the designs

D2(3) u D 5(3) 1 1 1 2 2 3 2 2 3 3

with b 10, X0 = 3, A, = 3, and

00001111

00002222

D 2(4) u 4D 4(4) =

2 12343333

.12344444

2
with b 8, X0 = 4, X1 = 4. Both designs have T 2 4/10, p 1/2

and therefore achieve the same joint confidence coefficient. However, the

design for k = 4 has N = 32 while the design for k = 3 has N = 30.

Thus, although each design is admissible for its own k-value, the design

for k = 4 is inadmissible w.r.t. the design for k = 3. (This result is

perhaps not too surprising here since the design for k = 3 is more balanced

than the one for k = 4. In fact, the design for k = 3 is optimal for

d/a not too large whereas the design for k = 4 is not optimal for any d/o.)

3. ACKNOWLEDGMENT

We are happy to acknowledge the assistance of Mr. Stephen Mykytyn who

computed the tables given in this paper, and who wrote the computer program

which detected the interesting example described above.



Table 2.2

Catalog of admissible designs- ror p 4, k 4

D D D D
No. 12 3 4

bo = 4 b2  4 b = 6 b4  1 2

A I ) 3 A(2) =4 A(3) 6 A (4) 0 0
blocks 0 0 0 0

(b)= 2 ())0 .( 3 ) = 1 (x ( 4 ) =

4 1 0 0 0 3 2 0.6061 0.400

5 1 0 0 1 3 3 0.5333 0.500

6 1 0 0 2 3 4 0.4912 0.571
0 0 1 0 6 1 0.4667 0.143

7 1 0 0 3 3 5 0.4638 0.625
0 1 0 3 4 3 0.4375 0.429
0 0 1 1 6 2 0.3810 0.250

1 0 0 4 3 6 0.4444 0.667
0 1 0 4 4 4 0.4000 0.500

2 0 0 0 6 4 0.3030 0.400

9 1 0 0 5 3 7 0.4301 0.700
0 1 0 5 4 5 0.3750 0.556
2 0 0 1 6 5 0.2821 0.455

10 1 0 0 6 3 8 0.4190 0.727
0 1 0 6 4 6 0.3571 0.600
2 0 0 2 6 6 0.2667 0.500
1 0 1 0 9 3 0.2540 0.250

11 1 0 0 7 3 9 0.4103 0.750
0 1 0 7 4 7 0.3438 0.636
2 0 0 3 6 7 0.2549 0.538
1 1 0 3 7 5 0.2540 0.417
1 0 1 1 9 4 0.2311 0.309

12 1 0 0 8 3 10 0.4031 0.7 9
0 1 0 8 4 8 0.3333 0. EF4
2 0 0 4 6 8 0.2456 0.571
1 1 0 4 7 6 0.2396 0.462
3 0 0 0 9 6 0.2020 0.400

1/For each number of blocks, the number under D (1 1 i 4) in the body

the table is the frequency f. with which D. appears in the design4 1

i=l iD: U f.D.



Table 2.2 (continued)

No. D!  D2  D3 D4

of bl 4 b2  4 b = 6 b 4 1

=locks x () 3 X (2) = ( 3 ) = 6 X(4) = 0 2

) 0 0 0 0 x0  A1  T p
(b) A~l) = 2 X(2) 0 x 3)= 1 x(4) 1

1 1 1 A1

13 1 0 0 9 3 11 0.3972 0.786
0 1 0 9 4 9 0.3250 0.692
2 0 0 5 6 9 0.2381 0.600
1 1 0 5 7 7 0.2286 0.500
3 0 0 1 9 7 0.1922 0.438

14 1 0 0 10 3 12 0.3922 0.800
0 1 0 10 4 10 0.3182 0.714
2 0 0 6 6 10 0.2319 0.625
1 1 0 6 7 8 0.2198 0.533
3 0 0 2 9 8 0.1843 0.471
2 0 1 0 12 5 0.1771 O.PG

15 1 0 0 11 3 13 0.3879 0.813
0 1 0 11 4 11 0.3125 0.733
2 0 0 7 6 11 0.2267 0.647
1 1 0 7 7 9 0.2126 0.563
3 0 0 3 9 9 0.1778 0.500
2 0 1 1 12 6 0.1667 0.333

16 1 0 0 12 3 14 0.3842 0.824

0 1 0 12 4 12 0.3077 0.750
2 0 0 8 6 12 0.2222 0.667
1 1 0 8 7 10 0.2067 0.588
3 0 0 4 9 10 0.1723 0.526
2 1 0 4 10 8 0.1714 0.U44
4 0 0 0 12 8 0.1515 0.400

17 1 0 0 13 3 15 0.3810 0.833
0 1 0 13 4 13 0.3036 0.765
2 0 0 9 6 13 0.2184 0.684
1 1 0 9 7 11 0.2017 0.611
3 0 0 5 9 11 0.1677 0.550
2 1 0 5 10 9 0.1652 0.474
4 0 0 1 12 9 0.1458 0.429



Table 2.2 (continued) 10

No. D D D D

N.1 2 3 4

of b I  4 b2 =4 b 3 :6 b4  1

blocks A (1) 3 A (2) 40 A A (4) 0 20 0 0 0 x0 x TpX0 11

(b) WjI) 2 A(2) 30 3 ) 1 = 1
01 1 1

18 1 0 0 14 3 16 0.3781 0.842
0 1 0 14 4 14 0.3000 0.778
2 0 0 10 6 14 0.2151 0.700
1 1 0 10 7 12 0.1974 0.632
3 0 0 6 9 12 0.1637 0.571
2 1 0 6 10 10 0.1600 0.500
4 0 0 2 12 10 0.1410 0.455
3 0 1 0 15 7 0.1364 0.318

19 1 0 0 15 3 17 0.3756 0.850
0 1 0 15 4 15 0.2969 0.789
2 0 0 11 6 15 0.2121 0.714
1 1 0 11 7 13 0.1937 0.650
3 0 0 7 9 13 0.1603 0.591
2 1 0 7 10 11 0.1556 0.524
4 0 0 3 12 11 0.1369 0.478
3 0 1 1 15 8 0.1305 0.348

20 1 0 0 16 3 18 0.3733 0.857
0 1 0 16 4 16 0.2941 0.800
2 0 0 12 6 16 0.2095 0.727
1 1 0 12 7 14 0.1905 0.667
3 0 0 8 9 14 0.1573 0.609
2 1 0 8 10 12 0.1517 0.545
4 0 0 4 12 12 0.1333 0.500
5 0 0 0 15 10 0.1212 0.400

21 1 0 0 17 3 19 0.3713 0.864
0 1 0 17 4 17 0.2917 0.810
2 0 0 13 6 17 0.2072 0.739
1 1 0 13 7 15 0.1876 0.682
3 0 0 9 9 15 0.1546 0.625
2 1 0 9 10 13 0.1484 0.565
4 0 0 5 12 13 0.1302 0.520

3 1 0 5 13 11 0.1296 0.458
5 0 0 1 15 11 0.1175 0.423



Table 2.2 (continued)

No. D1 D2 D3 D4

of bI  4 b2 :4 b3 :6 b4  1

blocks x (1) 3 (2) (3) 6 2(4) 0 T2

0 = 0 0 0

(b) A(1) 2 X(2) 0 x 3 ) = 1 1  1

22 1 0 0 18 3 20 0.3695 0.870
0 1 0 18 4 18 0.2895 0.818
2 0 0 14 6 18 0.2051 0.750
1 1 0 14 7 16 0.1851 0.696
3 0 0 10 9 16 0.1522 0.640
2 1 0 10 10 14 0.1455 0.583
4 0 0 6 12 14 0.1275 0.538
3 1 0 6 13 12 0.1261 0.480
5 0 0 2 15 12 0.1143 0.444
4 0 1 0 18 9 0.1111 0.333

23 1 0 0 19 3 21 0.3678 0.875
0 1 0 19 4 19 0.2875 0.826
2 0 0 15 6 19 0.2033 0.760

1 1 0 15 7 17 0.1829 0.708
3 0 0 11 9 17 0.1501 0.654
2 1 0 11 10 15 0.1429 0.600
4 0 0 7 12 15 0.1250 0.556
3 1 0 7 13 13 0.1231 0.500
5 0 0 3 15 13 0.1114 0.464
4 0 1 1 18 10 0.1073 0.357

24 1 0 0 20 3 22 0.3663 0.880
0 1 0 20 0.2857 0.833
2 0 0 16 6 20 0.2016 0.769
1 1 0 16 7 18 0.1808 0.720
3 0 0 12 9 18 0.1481 0.667
2 1 0 12 10 16 0.1405 0.615
4 0 0 8 12 16 0.1228 0.571
3 1 0 8 13 14 0.1204 0.519
5 0 0 4 15 14 0.1089 0.U83
6 0 0 0 12 0.1010 0.400

0 ________
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Table 2.2 (continued)

No. D1 D2 3 4

of bI  4 b2 b 3 4

(1) 3 2) 4 (3) 6 .(4) 0 T2blocks A0 3 A0 4 0  AO 0 x
0 0 0 1

(b) IN (1) 2 X (2) 0 (3) 1 (4)^i1 X1 1 i

25 1 0 0 21 3 23 0.3649 0.985

0 1 0 21 4 21 0.2841 0.840

2 0 0 17 6 21 0.2000 0.778

1 1 0 17 7 19 0.1790 0.731

0 2 0 17 8 17 0.1645 0.680

3 0 0 13 9 19 0.1464 0.679

2 1 0 13 10 17 0.1385 0.630

4 0 0 9 12 17 0.1208 0.586

3 1 0 9 13 15 0.1180 0.536

5 0 0 5 15 15 0.1067 0.500

4 1 0 5 16 13 0.1066 0.448

6 0 0 1 18 13 0.0984 0.419

26 1 0 0 22 3 24 0.3636 0.889

0 1 0 22 4 22 0.2826 0.846

2 0 0 18 6 22 0.1986 0.786

1 1 0 18 7 20 0.1773 0.741

0 2 0 18 8 18 0.1625 0.692

3 0 0 14 9 20 0.1448 0.690

2 1 0 14 10 18 0.1366 0.643

4 0 0 10 12 18 0.1190 0.600

3 1 0 10 13 16 0.1159 0.552

5 0 0 6 15 16 0.1046 0.516

4 1 0 6 16 14 0.1042 0.467

6 0 0 2 18 14 0.0961 0.438

5 0 1 0 21 12. 0.0938 0.344

27 1 0 0 23 3 25 0.3625 0.893

0 1 0 23 4 23 0.2813 0.852

2 0 0 19 6 23 0.1973 0.793

1 1 0 19 7 21 0.1758 0.750

0 2 0 19 8 19 0.1607 0.704

3 0 0 15 9 21 0.1434 0.700

2 1 0 15 10 19 0.1349 0.655

4 0 0 11 12 19 0.1174 0.613

3 1 0 11 13 17 0.1140 0.567

5 0 0 7 15 17 0.1028 0.531

4 1 0 7 16 15 0.1020 0.484

6 0 0 3 18 15 0.0940 0.455

5 0 1 1 21 12 0.0911 0.364
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Table 2.4

Optimal Design- to Achieve a Specified Confidence Coefficient

as a Function of d/!

for p = 4, k = 4

Confidence
Coefficient _/_

(1-cl) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8j 2.0

b=470 b=118 b=53 b=30 b=20 b=14 b=ll b=8 b=7' b=6

0.99 116,0 28,0 13,0 6,0 5,0 2,0 1,0 2,0 0,0 0,0

1,0 1,0 0,i 1,0 0,0 1,0 1,1 0,0 !4 1.0

b=290 b=73 b=33 b=19 b=12 b=9 b=7 b=5 b=U b=4

71,0 18,0 S,0 3,0 3,0 2,0 0,0 1,0 1,0 1,0
1,0 0,1 0,i 1,1 0,0 0,1 1,1 0,1 0.0 0.0

b=213 b=54 b=24 b=14 b=9 b=7 b=5 b=4 b=U b=4

0.90 53,0 13,0 6,0 3,0 2,0 0,0 1,0 1i0 1,0 1,0

0,1 0,2 0,0 0,2 0,1 1,1 0,1 0,0 0,0 0,0

b=168 b=43 b=20 b=12 b=8 b=5 b=4 b=4 b=4 b=4

0.85 42,0 10,0 5,0 3,0 2,0 1,0 1,0 1.0 1,0 1.0

0,0 0,3 0,0 0,0 0,0 0,1 0,0 0,0 0,0 0.0

b=136 b=35 b=16 b=9 b=6 b =4 b=4 b4 b=4 b=4
34,0 8,0 4,0 2,0 1,0 1,0 !i,0 1,0 1,0 1.0
0,0 0,3 0,0 0,1 0,2 0,0 0,0 0,0 0.0 0.0

b=112 b=28 b=13 b=8 b=5 b=4 b=u b=4 b=4 b=4

0.75 28,0 7,0 3,0 2,0 1,0 1,0 1,0 1,0 1,0 1,0
0,0 0,0 0,i 0,0 0,i 0,0 0,0 0,0 0,0 0,0

-'/The matrix in each cell is f where D u f.D with b

i( 3' 4. i~

is the optimal design for the given value of 1 - a and d/.
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